University of Twente

PhD position on Sparse Training for Deep Reinforcement Learning

2024-05-15 (Europe/Amsterdam)
Save job

About the employer

Looking for a job that matters? Join the university of technology that puts people first – and shape new opportunities both for yourself and for ou...

Visit the employer page

Job description

This doctoral research will be at the intersection of sparsity and artificial intelligence. The research will investigate the potential of sparse-to-sparse training of deep neural networks within reinforcement learning frameworks. This innovative approach holds promise for creating highly efficient and scalable AI systems capable of learning with limited data and computational resources, pertinent in areas such as autonomous systems, online resource allocation, and complex decision-making processes.

Main Responsibilities:

  • Conduct original research on sparse-to-sparse training techniques, exploring new frontiers in algorithmic development for DRL.
  • Investigate the mathematical underpinnings of sparsity in deep reinforcement learning and its effects on learning dynamics, and generalization.
  • Design and evaluate experiments to validate the effectiveness of sparse-to-sparse training in various scenarios and benchmarks.
  • Publish and present research findings in top-tier conferences (e.g., Machine Learning, JMLR) and journals (e.g., NeurIPS, ICLR, ICML, IJCAI, AAMAS, ECMLPKDD).
  • Collaborate with a international team of researchers and industry partners.

The successful candidate will be embedded in the DMB research group, and the supervision will be ensured by Dr. Elena Mocanu and Prof. dr. Maurice van Keulen. This PhD position is part of the Modular Integrated Sustainable Datacenter (MISD) project and will have ample collaboration opportunities. As part of the MISD project effort led by Elena Mocanu, we are opening multiple positions (two Ph.D. candidates and one PostDoc) to join us and work at the intersection of dynamic sparse training in neural networks on various tasks.

Useful links:

Your profile

The candidate is expected to have

  • A master degree (or will shortly, acquire) in Artificial Intelligence, Computer Science, Mathematics, Engineering, or a related discipline.
  • Excellent skills in machine learning and deep learning (experience with deep reinforcement learning is a plus).
  • Excellent programming skills (e.g. Python, PyTorch).
  • Experience with sparsity in computational models is a plus.
  • Good communication skills, with proficiency in English (written and oral).

Our offer

  • As a PhD candidate at UT, you will be appointed to a full-time position for four years, with a qualifier in the first year, within a very stimulating and exciting scientific environment;
  • The University offers a dynamic ecosystem with enthusiastic colleagues;
  • Your salary and associated conditions are in accordance with the collective labour agreement for Dutch universities (CAO-NU);
  • You will receive a gross monthly salary ranging from € 2.770,- (first year) to € 3.539,- (fourth year);
  • There are excellent benefits including a holiday allowance of 8% of the gross annual salary, an end-of-year bonus of 8.3%, and a solid pension scheme;
  • The flexibility to work (partially) from home;
  • A minimum of 232 leave hours in case of full-time employment based on a formal workweek of 38 hours. A full-time employment in practice means 40 hours a week, therefore resulting in 96 extra leave hours on an annual basis.
  • Free access to sports facilities on campus
  • A family-friendly institution that offers parental leave (both paid and unpaid);
  • You will have a training programme as part of the Twente Graduate School where you and your supervisors will determine a plan for a suitable education and supervision;
  • We encourage a high degree of responsibility and independence, while collaborating with close colleagues, researchers and other staff.

Information and application

Are you interested in this position? Please send your application via the 'Apply now' button below before 15 May 2024, and include:

  • A brief motivation letter (maximum 2 pages), emphasizing (a) your individual reasons for desiring this role, (b) a reflective evaluation of your most and least developed skills (optional), and (c) your personal research interests and goals (optional).
  • A Curriculum Vitae, including your contact details, educational background, work experience (if any), publications (if any), and English proficiency test scores (optional).  
  • Certified copies of degree certificates, with an accompanying detailed list of courses completed and corresponding grades.
  • Names and contact details of 2-3 referees (they will be approached only if the candidate is shortlisted).

For more information regarding this position, you are welcome to contact Dr. Elena Mocanu at

About the department

Our DMB collective stands by its diversity, inclusivity, and interdisciplinary composition. We are doing research at the forefront of advancements in machine learning, deep learning, and computer vision to advance scientific knowledge and societal welfare in a large spectrum of data science applications. We disseminate our research findings through publications in leading conferences (such as NeurIPS, ICLR, ICML, AAMAS, and CVPR) and prestigious journals (e.g. Nature Communications, Machine Learning, etc.).

About the organisation

The faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) uses mathematics, electronics and computer technology to contribute to the development of Information and Communication Technology (ICT). With ICT present in almost every device and product we use nowadays, we embrace our role as contributors to a broad range of societal activities and as pioneers of tomorrow's digital society. As part of a people-first tech university that aims to shape society, individuals and connections, our faculty works together intensively with industrial partners and researchers in the Netherlands and abroad, and conducts extensive research for external commissioning parties and funders. Our research has a high profile both in the Netherlands and internationally. It has been accommodated in three multidisciplinary UT research institutes: Mesa+ Institute, TechMed Centre and Digital Society Institute.

Job details

PhD position on Sparse Training for Deep Reinforcement Learning
Drienerlolaan 5 Enschede, Netherlands
Application deadline
2024-05-15 23:59 (Europe/Amsterdam)
2024-05-15 23:59 (CET)
Job type
Save job

More jobs from this employer

About the employer

Looking for a job that matters? Join the university of technology that puts people first – and shape new opportunities both for yourself and for ou...

Visit the employer page

This might interest you

Deciphering the Gut’s Clues to Our Health University of Turku 5 min read
Understanding Users to Optimise 3D Experiences Centrum Wiskunde & Informatica (CWI) 5 min read
Control Systems: The Key to Our Automated Future? Max Planck Institute for Software Systems (MPI-SWS) 5 min read
More stories